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Solid fuels are used as the propellants for many types of rockets. The structure of 
many such materials is nonuniform due to the combination of melted crystalline oxidants and 
a polymer matrix, with the latter accounting for a large percentage of the weight of the 
fuel. The technology used to make solid fuels does not make it possible to completely 
eliminate scattered micropores, which may be one reason for poor fuel performance. Pores 
may also be present as a result of long storage of the fuel, since slow chemical reactions 
take place in the fuel under normal conditions. These reactions result in the formation of 
gas in the material - a process which in particular leads to the development of microscopic 
cavities. In addition, accidents which might occur during transport of the fuel can involve 
shock loading of the grain and the consequent formation of cracks and other discontinuities 
in the fuel. The behavior of such discontinuities is of great interest, since they in- 
fluence the dominant combustion path and may disturb the equilibrium of the rocket in flight 
or even lead to explosion of the system [i]. Among the most important problems facing re- 
searchers are predicting the behavior of solid fuels under shock loading and evaluating the 
level of dynamic loading that is permissible from the viewpoint of maintaining the integrity 
of the structure and minimizing the danger of fire and explosion. 

In the present study, we model solid fuel as a porous thermoelastic medium. As such 
the model is among the class of models presently being actively developed on the basis of 
thermodynamic principles of continuum mechanics to describe media with internal state param- 
eters. The principles underlying the phenomenological description of such media were pre- 
sented in [2-4] while [5-10] discussed the main trends in this area and presented a biblio- 
graphy of relevant publications. The model being constructed here is closest to the model 
presented in [Ii] to describe a thermoelastoplastic medium being plastically deformed. 

i. Model of the Medium. Following [ii], we can obtain the system of governing equa- 
tions of the proposed model if we replace one of the internal state parameters of the model 
in [ii] (damage content ~) by the porosity parameter ~ (0 <_ ~ < i). This parameter repre- 
sents the volume content of micropores (cavities in the fuel). In this case, the governing 
equations are written in the form: 

~'  = I(o ekh - -  ~ v J '  - -  - y  cz ~ , 

^ t �9 r , 9 

(i.l) 
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Here ,  o i j  a r e  components  o f  t h e  s t r e s s  t e n s o r  r e s o l v e d  i n t o  two m u t u a l l y  o r t h o g o n a l  t e n s o r s :  
the spherical tensor o6ij = Okk6ij/3 and the deviator Sij:oij = o6ij + Sij ; Eii , ~eii , r 
are components of the tensors of the total, elastic, and plastic strains, respectively (r = 
seij + ~Pij, ePkk = 0); eij are components of the deviator of the strain tensor; T is ab- 
solute temperature; q is heat flux; K 0 and D0 are the compressive bulk modulus and shear 
modulus of the solid material (a = 0); aV is the coefficient of cubicle expansion; Y is the 
yield point; c o is heat capacity at constant stress; A and F are characteristics of the 
material. A dot above a given symbol denotes the material derivative with respect to time, 
while the symbol V denotes the Jaumann time derivative of the components of the tensor. 

Equations (1.1) were obtained on the basis of a standard thermodynamic analysis with the 
assumption that the material behaves in an elastoplastic manner. The following simplifying 
assumptions were also made in deriving the equations. 
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A. The elastic strain are small: aeijseij << I. 

B. The free energy Fp, being a function of the independent variables seij, EPij , a and 
can be represented as the sum of two terms 

F = r )  + r ) .  

This hypothesis is equivalent to assuming that the cumulative strains do not change the 
elastic properties of the material [ii]. 

C. The dissipation function d a 0 can be described as the sum of three nonnegative 
terms: 

d = d m ~ d s - j - d r ,  d m = ( a ~ j - -  p ~  

~F" ds = ~ p ~ a / > O  ' dT - q grad T 

(d m is the capacity for mechanical dissipation; d s is the capacity for energy dissipation 
due to the evolution of scattered micropores; d T is the capacity for heat dissipation). We 
also introduced the notation 

The tensor ~ij is referred to as the tensor of the "active" stresses. It is evident from 
(i.i) that if free energy F depends on the plastic strains sPij, then the energy dissipation 
process is determined by the "active" stresses Tij rather than by the true stresses oij. 
The introduction of the plastic strain EPij into ~ree energy F makes it possible to account 
for strain anisotropy of the material which is manifest with plastic deformation. 

We also assume that 

oF = ~ ,  --p~=.~l~ 

886 



zlI, K D, kJ/kg 

F i g .  4 

Fig. 5 

(F e 0, A e 0 are parameters of the material). When A = const, the second of these relations 
is a corollary of the Onsager theory [12]. 

D. The moduli K and D of the porous material depend on porosity a: 

K = Ko (1 -- ~z), ~t = ,%(1 -- ~z). 

We take the following as the kinetic equation for the porosity parameter g to close system 
( 1 . i ) :  

z - ~  z~I~ ---~)" (1.2) 
~ )+ (~ 

Here, 

!::) ( ' ~ '~ - 2 ~,~) (1.3) o + == ----- King--p0 o ~ } ' l r ~  .:~ ' "g -- Po , ~ ,  

(q is the absolute viscosity of the material; a 0 is initial porosity). Equations (1.2)-(!.3) 
were obtained from the solution of the problem of the dynamics of a single spherical pore 
of internal radius a and external radius b in a viscoplastic incompressible material when 

= a3/b 3 [13-16]. Here, we also approximately accounted for the pressure of the gas in 
the pore and on its inside surface, as well as the change in the radius of the cavity (with 
allowance for the fact that the pressure in the gas cavity instantaneously reacts to a 
change in the radius of the cavity). The process of compression of the gas was assumed to 
be adiabatic [17]. In (1.3), P0 is the initial pressure of the gas in the pore; k is the 
adiabatic exponent. 

Model (1.1)-(1.3) generalizes the Prandtl-Reuss model of elastoplastic flow with the 
yon Mises yield criterion and accounts for the anisotropy of plastic deformation (F # 0), 
the presence of micropores in the material, the growth of these pores in rarefaction waves 
and their collapse in compression waves, the mutual effect of the porosity and stress state 
of the material, and temperature effects. The model does not contain an explicit dependence 
on strain rate, since it is to be used in high-rate loading processes in which viscous 
effects not connected with the inertia of the pores can be ignored. In fact, the character- 
istic time of the problem t s = L/c 0 is much greater than the relaxation time �9 = D/~, which 
is in turn comparable to the characteristic time in the problem of the dynamics of an in- 
dividual pore t s = d/c 0 (L is the characteristic dimension of the body, c o is the speed of 
sound in the material, and d is the diameter of the pore). 
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The yield point Y and shear modulus D depend on temperature, pressure, and other state 
parameters. We assume that this dependence can be described by the Steinberg-qCynan model 
[18]: 

}~+= Yo(l-}-~f~n)n ( '1-- ba (~)~/a --  h (T__ To)), 

Yo (~ + ~ n ) ~  < Y~, ,  ro = 0 ~t r > r~, 
/,o n ,,,213 Po ' 

Fo 900 " (1 b~jI9o ~11~ __ _ 

= , - ( v t  

(sPin is the intensity of the plastic strains; Y0, Ymax, h, D00, ~, n, b, Y0 are material 
constants). 

2. Failure Criterion. As the criterion of failure of the solid fuel (the nucleation 
of cracks - a new free surface in the material), we take the condition for the attainment 
of the limiting value D, by unit (per unit of mass) dissipation [ii, 19]: 

t# 

f t d d t = D , .  D =  t-- 7 
0 

(2 .1)  

Here, t, is the time to failure; D, is a material constant which is determined experimental- 
ly; d is the dissipation function. For the given model, this function has the form 

r (2 .2 )  

Following the classification in [20], criterion (2.1) can be considered an entropy- 
based failure criterion (d = py, where y is the derivative of entropy [ii]). In principle, 
such a failure criterion makes it possible to describe the process of failure by two mecha- 
nisms. The first involves the growth and coalescence of micropores, such as occurs in the 
case of failure by cleavage in rarefaction waves [in this case, along with the capacity for 
mechanical dissipation d m = TijePij , the capacity for energy dissipation due to micropore 
growth d s = A& 2 makes the main contribution to (2.1)-(2.2)]. In the case of tensile failur~ 
the failure process may be facilitated by prior shock compression of the material. Such 
compression heats the material, making it more "compliant" and causing tensile fracture to 
occur more rapidly. The second mechanism involves failure in shear. This occurs (for 
example) when a foreign object with a planar leading edge is introduced into the grain. In 
this case, narrow zones of intensive adiabatic shear develop at stress concentration sites 
in the material about the periphery of the foreign body. The work done in plastic deforma- 
tion is almost entirely converted to heat and, due to the high local strain rates, there is 
not enough time for this heat to propogate a substantial distance from the zones of developed 
plastic strain. As a result, the temperature in these zones rises and large temperature 
gradients are formed. The latter in turn results in additional plastic flow and further 
concentration of local plastic strains, ultimately leading to the motion of "plugs" in the 
material and - in some cases - to the ejection of these plugs from the grain. In the case 
of shear failure, the main contribution to (2.1)-(2.2) is made by the terms d m = TijsPij and 
d T = - q! grad T/T. i The last term is the capacity for heat dissipation and, in the case of 
the Fourier heat-conduction law q = -~ grad T, has the form d T = K(grad T)2/T. 
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3. Testing of the Model. To substantiate the model, we solved two-dimensional axisym- 
metric problems involving the normal collision of cylindrical grains with a rigid wall and a 
rigid cylindrical projection (Fig. la and b). 

Since the characteristic time of the collision process is short (corresponding to the 
time required for several elastic wave propagations through the striker), the collision 
problem was solved in an adiabatic approximation (div q = 0). We also ignored the strain 
anisotropy of the material, assuming that F = 0. In this case, the mass, momentum, and 
internal energy equations are written in the cylindrical coordinate system rz: 

0_~:  __  Err _ _  Szz - -  EO0, 
9 
�9 ao  a S r r  a S r z  t Srr  - -  S0O 

p v ~ =  y 7  § ar " az ' ,. ' 

p~, as aszz as~. S,.~ 
_-_ ~ + - ~ -  + - ~ / 4 - - -  

- -  2S~._'~z + A ~  2. 

(3.1) 

We write the expressions for the strain rates as 

av r ~J~, ~, . l_[ov r av~ 1 

(v r, v z are projections of the velocity vector on the r and z axes). 

The initial conditions at t = 0: 

( 3 . 2 )  

u,, : 0 ,  v~ = - - V o ,  p = p o ,  a : S~j : - 0  

(V 0 is initial collision velocity). 

The boundary conditions: oiin j = 0 on the free surface of the striker (nj represents 
components of a unit formal to the outside surface of the striker); v z = 0 and-orz = 0 on 
the part 2(t) of the surface of the striker in contact with the target (E(t) and the free 
surface of the striker are determined in the course of the solution of the problem). Also, 
it is assumed that the striker moves along the surface of the target without friction. 

We determine the moment the striker rebounds from the target by using the criterion of 
vanishing of their forces of interaction [21, 22]: 

F (t) = - ! ! ~zzdz. 
~(6 (3.3) 

The collision problem was solved numerically on a Lagrangian grid in accordance with 
an explicit finite-difference scheme of the type described in [18]. The calculations were 
performed for solid VRA fuel with P0 = 1850 kg/m, K 0 = 5.666 GPa, ~0 = 1.244 GPa, Y = 0.0866 
GPa, ~v = 3"10-6 K-I, co = 1.23 kJ/(kg'K), T m = i000 K. Absolute viscosity ~ = i0 Pa'sec, 
which is typical of reactive solids [16]. The initial temperature T o = 300 K~ The gas 
filling the micropores was air under normal conditions: P0 = 0.i MPa, k = 1.4. We took A = 
5"103 Pa-sec as the parameter linking the processes of deformation and evolution of the 
micropores. This value was obtained as follows. We numerically solved the problem of the 
dynamic compression of a micropore of an initial external radius b 0 and internal radius a 0. 
The pore contained a gas or was hollow and was subjected to an external pressure pulse P = 
P(t) that was uniformly distributed over the outside surface of the cell. The duration of 
the pulse was �9 [17]. Here, we determined the mean-mass temperature of the cell at the 
moment of unloading 

<T) = ! 4 a r 2 9 T &  , 6:u'2pdr 
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for a "porous" cell (a 0 # 0)--~<T> and a "solid" cell (a 0 = 0) -- <T>~ We thus found the 
temperature increment A<T> --<T> due to the "porosity" of the cell. The problem on micropore 
dynamics was cast in a unidimensional formulation with allowance for its spherical symmetry. 
The gas was assumed to be ideal and the process adiabatic. We used equations of thermoelasto- 
viscoplasticity of the Pezhina type [23] as the constitutive equations for the material of 
the pores. We took the same absolute viscosity D as in kinetic equation (1.2). We then 
numerically solved the problem of the plane collision of an aluminum plate and the test 

3 3 material, with the porosity s 0 = a0/b 0 and s 0 = 0 in thermoelastoplastic approximation (i.i). 
This collision took place at the velocity V 0. The problem of plane collision has been 
examined in [ii, 19], among other studies. The collision velocity V 0 and the thickness H 
of the striker were chosen so as to ensure a pressure on the order of P with a duration T in 
the frontal layer of the target. By varying the parameter A of model (i.i), we were able to 
find a value of A which ensured that the amount by which the temperature in the frontal 
layer of the porous target exceeded the same temperature in the solid target (s 0 = 0) was 
the same as in the problem of an isolated pore. Calculations were performed for different 
b0, s0, P, and T. Here, we succeeded in finding a value of A which satisfactorily described 
all of the calculations. 

Figures 2-6 show some of the calculated results obtained for V 0 = 200 m/sec and s 0 = 
0.i. Figure 2 shows the relations for the dimensionless force of interaction F(t)/mg of the 
strikers and the targets for cases a and b in Fig. 1 (mg is the weight of the striker, t = 
tc0/H is dimensionless time, c o = J(K 0 + (3/4)/D0)/@0 is the speed of sound). Figure 3 
shows lines depicting the level of porosity ~, while Fig. 4 shows increments of temperature 
AT (the numbers on the left) and dissipation D (the numbers on the right) at the moment the 
striker rebounds from the flat wall. Figure 5 shows lines illustrating the level of porosity 

and Fig. 6 shows increments of temperature AT (the numbers on the left) and dissipation 
(the numbers on the right) at the moment the striker rebounds from the wall with the projec- 
tion. 

If follows from the calculations that the interaction of the strikers and the targets 
is distinctly wavelike in character. A compression wave with a two-wave configuration is 
formed at the striker-~earget contact surface at the beginning of the collision process, with 
the velocities of the components of this wave differing substantially. The first wave is 
elastic, while the second wave is plastic. The amplitude and velocity of the latter depend 
on collision velocity. Unloading waves propagating from the lateral surfaces of the strikers 
that are free of loads reduce the intensity of the loading waves and distort the initially 
plane compression front. Thus, the stress-strain state of the strikers differs appreciably 
from the stress-strain state calculated in a unidimensional approximation (uniaxial stress 
state (rod approximation) or uniaxial strain state (thin-plate approximation)). Having 
reached the free back surface of the striker, the elastic wave is reflected from the free 
surface as an unloading wave and moves counter to the front of the plastic compression wave. 
Their interaction results in a decrease in the intensity of the plastic wave, while the 
elastic compression wave again propogates toward the free back surface. The process just 
described continues until the amplitude of unloading waves (both from the back surface and 
from the lateral surface) equals the amplitude of the plastic compression wave. The stresses 
ultimately become tensile, which causes the striker to rebound from the target. The free 
lateral surface causes contact with the points of the striking end to be lost at different 
moments of time. This is particularly evident from Fig. 2. After the elapse of a certain 
period of time, contact is restored at these points on the surface of the target. This 
matter was examined in [22] for the case of the impact of a prismatic rod against a rigid 
wall. 

In the case of the impact of a cylinder against a wall with a projection, the interac- 
tion process is quite nonuniform from the very first moments of the collision process. The 
first abrupt increase in the interaction force (line b in Fig. 2) is connected with the 
impact of the main part of the front surface of the cylinder on the target. The graph of 
this force is subsequently similar to the graph of the force F(t) in the case of collision 
with a wall without a projection (Fig. 2, line a). The durations of the interactions for 
these two cases are markedly different, which can be attributed to the effect of the projec- 
tion. 

We should point out that the given material is less affected than metals by the so- 
called intermediate rebound phenomenon (here, the force of interaction F(t) vanishes before 
the beginning of the final rebound of the striker from the target). In the case of metals, 
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this phenomenon is seen both for long strikers (intermediate rebound at the final stage of 
interaction) and (to a greater extent) for short strikers (intermediate rebound in the 
middle of the interaction process) [22, 24]. This is probably related to the high degree 
of compressibility of the fuel - including the compressibility due to the presence of micro- 
pores+ 

The character of distribution of lines depicting the levels of the increments of tem- 
perature AT and dissipation D is the same. The nonuniformity of the fields of AT and D 
depends on the characteristic deformation zones. The zones of elevated temperature at the 
free ends of the strikers are connected with the wave character of the deformation process 
(rapid tension of the material at the sites of collision of counter-directed unloading waves 
propogating from the front and back surfaces of the striker). The largest increase in tem- 
perature in the case of collision with the flat wall is seen near the front surface at the 
periphery of the striker. In the case of impact against the wall with the projection, the 
greatest energy dissipation occurs near the projection in an annular region whose radius is 
roughtly equal to the radius of the cavity created by the projection. Failure of the 
material should also be expected in these regions of increased energy dissipation. 

Plastic flow of pores occurs near the striker-~carget contact surface, while pore growth 
takes place near the back surface. There are sizable regions (the hatched regions in Figs. 
3 and 5) in which porosity remains constant. This phenomenon was noted in [25]. 

Thus, we have constructed a coupled model of a porous thermoelastoplastic body. A 
failure criterion based on the limiting unit dissipation was proposed. In principle, this 
criterion makes it possible to describe failure in a complex stress state either by the 
shear mechanism or by the tensile mechanism, reflecting an increase in the porosity of the 
material. Plastic flow of pores occurs in the compression zones. The change in porosity 
in turn has an effect on the stress state of the material and is accompanied by energy dissi- 
pation. The model accounts for the presence of gas in the pores. With the use of the solu- 
tion of problems involving the collision of cylindrical specimens with solid targets as an 
example, it was shown that the model correctly describes the main features of the process, 
while the failure criterion makes it possible to predict the locations of the regions of 
macroscopic failure. 
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LAWS OF THE KINETIC THEORY OF STRENGTH OF FROZEN SOILS 

A. A. Konovalov UDC 624.139 

The studies [i, 2], devoted to the rheology of frozen soils, demonstrated the kinetic 
nature of the strength of these soils and presented a physical interpretation of the param- 
eters of an equation describing their long-term strength from an atomic-kinetic viewpoint. 
However, these findings have not found expression in the mathematical theory of the rheology 
of frozen soils~ Nor has use been made of quantitative relations and parameters expressing 
the temperature-time dependence of strength. According to [3] such relations and parameters 
can be established for all solids. Standard interpolation formulas which include empirical 
coefficients serve as the basis of quantitative methods of determining the strength charac- 
teristics of frozen soil. In particular, use is made of the coefficient [I]: 

= (wI~)V r (i) 

Here, �9 is the time to failure (life); o is pressure; g and F are empirical coefficients 
dependent on temperature, soil composition, type of load, etc. 

We will attempt to find the temperature dependence of the strength of frozen soil in 
explicit form. Equation (i) is conveniently represented as 

T ---- T0(o,~/o)wr ~ (2) 

where o m is the instantaneous (maximum) strength corresponding to the minimum life ("momenf9 
T 0 . In accordance with the representations of atomic-kinetic theory, this physical "moment" 
is equal to the period of thermal vibration of the atoms T o ~ i0 -z3 sec. 
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